Download Manual for the Seismic Design PDF

TitleManual for the Seismic Design
Tags Foundation (Engineering) Structural Engineering Bending Shear Stress
File Size2.4 MB
Total Pages209
Document Text Contents
Page 1

M
anual for the seism

ic design of steel and concrete buildings to Eurocode 8
M

ay 2010
G

uide pour la conception parasism
ique des bâtim

ents en acier ou en béton selon l’Eurocode 8
m

ai 2010

Manual for the seismic
design of steel and concrete
buildings to Eurocode 8
May 2010

Guide pour la conception
parasismique des bâtiments
en acier ou en béton
selon l’Eurocode 8
mai 2010

Supporting sponsor

Page 2

A
c

k
n

o
w

le
d

g
e

m
e

n
ts

P
e
rm

is
si

o
n

t
o

r
e
p

ro
d

u
c
e
e

xt
ra

c
ts

f
ro

m
B

S
E

N
1

9
9

8
-1

:
2

0
0

4
is

g
ra

n
te

d


b
y

B
S

I.
B

ri
tis

h
S

ta
n

d
a
rd

s
c
a
n

b
e
o

b
ta

in
e
d

in
P

D
F

o
r

h
a
rd

c
o

p
y

fo
rm

a
ts


fr

o
m

t
h

e
B

S
I
o

n
lin

e
s

h
o

p
:

w
w

w
.b

si
g

ro
u

p
.c

o
m

/S
h

o
p

o
r

b
y

c
o

n
ta

c
tin

g


B
S

I
C

u
st

o
m

e
r

S
e
rv

ic
e
s

fo
r

h
a
rd

c
o

p
ie

s
o

n
ly

:
Te

l:
+

4
4

(
0

)2
0

8
9

9
6

9
0

0
1

,
E

m
a
il:

c
se

rv
ic

e
[email protected]

b
si

g
ro

u
p

.c
o

m
F

ig
u

re
8

.1
is

p
ro

vi
d

e
d

c
o

u
rt

e
sy

o
f

M
E

E
D

D
A

T,
f

ig
u

re
8

.2
is

p
ro

vi
d

e
d


c
o

u
rt

e
sy

o
f

th
e
B

ri
tis

h
G

e
o

lo
g

ic
a
l S

u
rv

e
y

a
n

d
f

ig
u

re
8

.3
is

p
ro

vi
d

e
d


c
o

u
rt

e
sy

o
f

th
e
E

u
ro

p
e
a
n

S
e
is

m
o

lo
g

ic
a
l C

o
m

m
is

si
o

n
.

F
ig

u
re

s
1

0
.2

4
,

1
0

.2
6

,
1

0
.2

7
,

1
0

.2
9

a
n

d
1

0
.3

0
a

re
p

ro
vi

d
e
d

c
o

u
rt

e
sy

o
f

C
E

R
IB

.


F
ig

u
re

s
1

1
.7

a
n

d
1

1
.8

a
re

a
d

a
p

te
d

f
ro

m
A

N
S

I/
A

IS
C

3
5

8
.

L
a
F

ig
u

re
8

.1
e

st
r

e
p

ro
d

u
ite

a
ve

c
l’

a
im

a
b

le
a

u
to

ri
sa

tio
n

d
u

M
E

E
D

D
A

T,


la
f

ig
u

re
8

.2
e

st
r

e
p

ro
d

u
ite

a
ve

c
l’

a
im

a
b

le
a

u
to

ri
sa

tio
n

d
u


B

ri
tis

h


G
e
o

lo
g

ic
a
l S

u
rv

e
y”

e
t

la
f

ig
u

re
8

.3
e

st
r

e
p

ro
d

u
ite

a
ve

c
l’

a
im

a
b

le


a
u

to
ri
sa

tio
n

d
e
la

«
E

u
ro

p
e
a
n

S
e
is

m
o

lo
g

ic
a
l C

o
m

m
is

si
o

n
»

.
L

e
s

fig
u

re
s

1
0

.2
4

,
1

0
.2

6
,

1
0

.2
7

,
1

0
.2

9
e

t
1

0
.3

0
s

o
n

t
re

p
ro

d
u

ite
s

a
ve

c
l’

a
im

a
b

le


a
u

to
ri
sa

tio
n

d
u

C
E

R
IB

.
L

e
s

fig
u

re
s

1
1

.7
e

t
1

1
.8

s
o

n
t

a
d

a
p


e
s

d
e

l’A
N

S
I/

A
IS

C
3

5
8

.

Page 104

L
e

ra
p

p
o

rt
d

e
fo

rm
e

p


d
o

m
in

an
t
a

0
p

e
u
t

êt
re

d
ét

e
rm

in
é

à
p

a
rt

ir
d

e
l’e

xp
re

ss
io

n
s

u
iv

an
te

,
so

u
s


se

rv
e

q
u
e

le
r

ap
p

o
rt

(
h

w
i /

l w
i)

n
e

va
rie

p
as


tr

o
p

e
n
tr

e
le

s
m

u
rs

;
il

e
st

r
e
c
o

m
m

a
n
d

é
d

e
c
o

n
si

d
é
re

r
q

u
e

d
e
s

va
ri
at

io
n
s

in


ri
e
u
re

s
à

2
0

%
p

e
u
ve

n
t

ê
tr

e
c
o

n
si

d
é


e
s

c
o

m
m

e
a
c
c
e
p

ta
b

le
s

:

/
h

l
w

i
w

i
0
a

R
R

=


(1
0
.5

)

o
ù
:

h
w

i
e
st

la
h

au
te

u
r

d
u
m

u
r

i ;
e

t
l w

i
e
st

la
lo

n
g

u
e
u
r

d
e

la
s

e
ct

io
n
t

ra
n
sv

e
rs

a
le

d
u
m

u
r

i.

Q
u
a
n
d

la
lo

n
g

u
e
u
r

d
u
m

u
r

va
ri
e

av
e
c

la
h

au
te

u
r

o
u
q

u
a
n
d

il
y

a
d

e
s

o
u
ve

rt
u
re

s
d

a
n
s

le
s

m
u
rs

o
u
d

a
n
s

le
c

as
d

e
m

u
rs

c
o

u
p


s,

il
e

st


re
c
o

m
m

a
n
d

é
d

e
p

re
n
d

re
u

n
e

lo
n
g

u
e
u
r

é
q

u
iv

a
le

n
te

d
a
n
s

l’E
q

u
at

io
n
1

0
.5

,
lo

n
g

u
e
u
r

d
o

n
n
a
n
t

u
n
e

ra
id

e
u
r

é
q

u
iv

a
le

n
te

(
c.

à.
d

.
le

m
ê
m

e
d

é
p

la
c
e
m

e
n
t

au


so
m

m
e
t

d
a
n
s

u
n
e

d
is

tr
ib

u
tio

n
d

o
n
n
é
e

d
e

fo
rc

e
s)

.
N

é
a
n
m

o
in

s,
p

o
u
r

si
m

p
lifi

e
r

l’é
va

lu
at

io
n
d

e
a

0
q

u
a
n
d

la
s

tr
u
ct

u
re

c
o

m
p

re
n
d

d
e
s

m
u
rs

c
o

u
p


s,

il
e

st


a
c
c
e
p

ta
b

le
d

e
c
o

n
si

d
é
re

r
c
h
aq

u
e

m
u
r

in
d

é
p

e
n
d

a
m

m
e
n
t,

e
n
n

e
c
o

n
si

d
é
ra

n
t

p
as

l’
e
ff

e
t

d
e

c
o

u
p

la
g

e
a
p

p
o

rt
é

p
a
r

le
s

lin
te

au
x.

D
e

m
ê
m

e,
q

u
a
n
d

u
n
m

u
r

e
st

c
la

ss
é

c
o

m
m

e
m

u
r

p
le

in
(

c.


-d
.s

a
n
s

o
u
ve

rt
u
re

o
u
a

ve
c

d
e

p
e
tit

e
s

o
u
ve

rt
u
re

s)
,

a
lo

rs
l’

in
flu

e
n
c
e

d
e
s

o
u
ve

rt
u
re

s
p

e
u
t

ê
tr

e
n
é
g

lig
é
e

d
a
n
s

l’é
va

lu
at

io
n
d

e
a

0
.

D
a
n
s

le
s

st
ru

c
tu

re
s

ir


g
u
liè

re
s

e
n
p

la
n
,

le
r

a
p

p
o

rt
d

e
fo

rm
e

p
e
u
t

ê
tr

e
d

iff
é
re

n
t

d
’u

n
m

u
r

à
l’a

u
tr

e.
D

a
n
s

d
e

te
ls

c
as

,
il

e
st

r
e
c
o

m
m

a
n
d

é
q

u
e

l’é
va

lu
at

io
n
d

e
a

0
s

o
it

se
u
le

m
e
n
t

b
as

é
e

su
r

le
s

m
u
rs

q
u
i p


d

o
m

in
e
n
t

d
a
n
s

la
r

é
si

st
a
n
c
e

à
l’e

ff
o

rt
t

ra
n
c
h
a
n
t

to
ta

l.
P

a
r

ex
e
m

p
le

,
le

s
m

u
rs

le
s

p
lu

s
fle

xi
b

le
s

q
u
i r

é
si

st
e
n
t

e
n
se

m
b

le
à

m
o

in
s

d
e

3
5

%
d

e
l’e

ff
o

rt
t

ra
n
c
h
a
n
t

re
p

ris
p

a
r

le
m

u
r

le
p

lu
s

rig
id

e
p

e
u
ve

n
t

ê
tr

e
n
é
g

lig
é
s

d
a
n
s

l’a
p

p
lic

at
io

n
d

e
l’E

q
u
at

io
n
1

0
.5

.

10
.6


O

ss
at

ur
es

s
pa

tia
le

s
(p

ot
ea

ux
, p

ou
tr

es
e

t n
œ

ud
s)

10
.6

.1


C
on

di
tio

ns
g

én
ér

al
es

p
ou

r
le

s
os

sa
tu

re
s

10
.6

.1
.1


Ex

ce
nt

ric
ité

e
nt

re
p

ou
tr

es
e

t p
ot

ea
ux

L’
ex

ce
n
tr

ic
ité

d
e

l’a
xe

d
’u

n
e

p
o

u
tr

e
p

ar
r

ap
p

o
rt

à
l’

a
xe

d
u
p

o
te

au
a

u
q

u
el

e
lle


e
st

c
o

n
n
e
ct

é
e

d
o

it
êt

re
li

m
ité

e
à

b
c
/4

,
b

c
ét

a
n
t

la
p

lu
s

g
ra

n
d

e
d

im
e
n
si

o
n


d
e

se
ct

io
n
t

ra
n
sv

e
rs

al
e

d
u
p

o
te

au
p

e
rp

e
n
d

ic
u
la

ire
à

l’
a

xe
lo

n
g

itu
d

in
al

d
e

la


p
o

u
tr

e.

Il
e
st

n
o


q
u
e

c
e
tt

e
c
o

n
d

iti
o

n
s

’a
p

p
liq

u
e

au
x

p
o

u
tr

e
s

c
o

n
tin

u
e
s

d
e

p
a
rt

e
t

d
’a

u
tr

e
d

’u
n
n

œ
u
d

p
o

u
tr

e
-p

o
te

au
e

t
au

ss
i a

u
x

p
o

u
tr

e
s

q
u
i s

’a
rr

ê
te

n
t

à
u
n
t

e
l

n
œ

u
d

.

83


Th
e

In
st

it
ut

io
n

of
S

tr
uc

tu
ra

l E
ng

in
ee

rs
G

ui
de

p
ou

r l
a

co
nc

ep
tio

n
pa

ra
si

sm
iq

ue
d

es
b

ât
im

en
ts

e
n

ac
ie

r o
u

en
b

ét
on

s
el

on
l’

EC
8

10
.6


B

ât
im

en
ts

e
n


to

n

T
h
e

p
re

va
ili

n
g

a
sp

e
ct

r
at

io
a

0
m

ay
b

e
d

et
e
rm

in
e
d

f
ro

m
t

h
e

fo
llo

w
in

g


ex
p

re
ss

io
n,

p
ro

vi
d

e
d

t
h
e

ra
tio

(
h

w
i /

l w
i)

d
o

e
s

n
o
t

d
iff

e
r

si
g

n
ifi

c
a
n
tly

b
et

w
e
e
n


w
a
lls

;
as

a
g

u
id

e,
it

is
r

e
c
o

m
m

e
n
d

e
d

t
h
at

v
a
ri
at

io
n
s

lo
w

e
r

th
a
n
2

0
%

m
ay

b
e

ju
d

g
e
d

a
s

a
c
c
e
p

ta
b

le
:



/
h

l
w

i
w

i
0
a

R
R

=


(1
0
.5

)

w
h
e
re

:
h

w
i

is
t

h
e

h
e
ig

h
t

o
f
w

a
ll

i;
a
n
d

l w
i


is

t
h
e

cr
o

ss
-s

e
ct

io
n
al

le
n
g

th
o

f
w

a
ll

i.

W
h
e
n
t

h
e

le
n
g

th
o

f
a

w
a
ll

va
ri
e
s

w
ith

h
e
ig

h
t,

o
r

w
h
e
n
t

h
e
re

a
re

o
p

e
n
in

g
s

in
t

h
e

w
a
ll,

o
r

in
t

h
e

c
as

e
o

f
c
o

u
p

le
d

w
a
lls

,
it

is
r

e
c
o

m
m

e
n
d

e
d

t
h
at

a
n


e
q

u
iv

a
le

n
t

le
n
g

th
s

h
o

u
ld

b
e

u
se

d
in

E
q

u
at

io
n
1

0
.5

,
w

h
ic

h
g

iv
e
s

a
n
e

q
u
iv

a
le

n
t

st
iff

n
e
ss

(
i.e

.
th

e
sa

m
e

d
is

p
la

c
e
m

e
n
t

at
t

o
p

u
n
d

e
r

a
g

iv
e
n
d

is
tr

ib
u
tio

n
o

f
fo

rc
e
s)

.
H

o
w

e
ve

r,
t

o
s

im
p

lif
y

th
e

e
va

lu
at

io
n
o

f
a

0
w

h
e
n
t

h
e

st
ru

ct
u
re

in
c
lu

d
e
s

c
o

u
p

le
d

w
a
lls

,
it

is
a

d
m

is
si

b
le

t
o

c
o

n
si

d
e
r

e
a
c
h
w

a
ll

in
d

e
p

e
n
d

e
n
tly

,
n
o
t

c
o

n
si

d
e
ri
n
g

t
h
e

e
ff

e
ct

o
f
c
o

u
p

lin
g

b
e
a
m

s.
A

ls
o
,

w
h
e
re

a
w

a
ll

is
c

la
ss

ifi
e
d

a
s

a
p

la
in

w
a
ll

(i.
e.

w
ith

o
u
t

o
p

e
n
in

g
s

o
r

w
ith

s
m

a
ll

o
p

e
n
in

g
s)

,
th

e
n
t

h
e

in
flu

e
n
c
e

o
f

o
p

e
n
in

g
s

m
ay

b
e

d
is

re
g

a
rd

e
d

in
t

h
e

e
va

lu
at

io
n
o

f
a

0
.

In
s

tr
u
ct

u
re

s
w

h
ic

h
a

re
ir

re
g

u
la

r
in

p
la

n
,

th
e

as
p

e
ct

r
at

io
m

ay
b

e
ve

ry


d
iff

e
re

n
t

fr
o

m
o

n
e

w
a
ll

to
a

n
o
th

e
r.
In

s
u
c
h
c

as
e
s,

it
is

r
e
c
o

m
m

e
n
d

e
d

t
h
at

t
h
e

e
va

lu
at

io
n
o

f
a

0
is

b
as

e
d

s
o

le
ly

o
n
t

h
o

se
w

a
lls

w
h
ic

h
p

re
d

o
m

in
at

e
in

r
e
si

st
in

g


th
e

to
ta

l s
e
is

m
ic

s
h
e
a
r

fo
rc

e.
F

o
r

ex
a
m

p
le

,
th

e
m

o
st

fl
ex

ib
le

w
a
lls

w
h
ic

h


to
g

e
th

e
r

re
si

st
le

ss
t

h
a
n
3

5
%

o
f
th

e
sh

e
a
r

fo
rc

e
ta

ke
n
b

y
th

e
st

iff
e
st

w
a
ll

m
ay


b

e
n
e
g

le
ct

e
d

f
o

r
th

e
p

u
rp

o
se

s
o

f
E

q
u
at

io
n
1

0
.5

.

10
.6


M

om
en

t r
es

is
tin

g
fr

am
es

(
be

am
s,

c
ol

um
ns

a
nd

jo
in

ts
)

10
.6

.1


G
en

er
al

c
on

di
tio

ns
f

or
f

ra
m

es

10
.6

.1
.1


Ec

ce
nt

ric
ity

b
et

w
ee

n
be

am
s

an
d

co
lu

m
ns

T
h
e

e
c
c
e
n
tr

ic
ity

o
f
a

b
e
a
m

a
xi

s
sh

o
u
ld

b
e

lim
ite

d
r

e
la

tiv
e

to
t

h
at

o
f
th

e
c
o

lu
m

n
in

to
w

h
ic

h
it

f
ra

m
e
s,

s
o

t
h
at

t
h
e

d
is

ta
n
c
e

b
et

w
e
e
n
t

h
e

c
e
n
tr

o
id

a
l

a
xe

s
o

f
th

e
tw

o
m

e
m

b
e
rs

s
h
o

u
ld

b
e

lim
ite

d
t

o
le

ss
t

h
a
n
b

c
/4

,
w

h
e
re

b
c

is
t

h
e

la
rg

e
st

c
ro

ss
-s

e
ct

io
n
al

d
im

e
n
si

o
n
o

f
th

e
co

lu
m

n
n

o
rm

al
t

o
t

h
e

lo
n
g

itu
d

in
al


a

xi
s

o
f
th

e
b

e
a
m

.

It
m

ay
b

e
o

b
se

rv
e
d

t
h
at

t
h
is

c
o

n
d

iti
o

n
a

p
p

lie
s

to
b

e
a
m

s
w

h
ic

h
a

re


c
o

n
tin

u
o

u
s

th
ro

u
g

h
a

b
e
a
m

-c
o

lu
m

n
jo

in
t

as
w

e
ll

as
t

h
o

se
t

h
at

t
e
rm

in
at

e
at


th

e
jo

in
t. T

he
In

st
it

ut
io

n
of

S
tr

uc
tu

ra
l E

ng
in

ee
rs

M
an

ua
l f

or
th

e
se

is
m

ic
d

es
ig

n
of

s
te

el
a

nd
c

on
cr

et
e

bu
ild

in
gs

to
E

ur
oc

od
e

8


83


10
.6

C
on

cr
et

e
bu

ild
in

gs

Page 105

10
.6

.1
.2

R
és

is
ta

nc
es

r
el

at
iv

es
d

es
p

ou
tr

es
e

t d
es

p
ot

ea
ux

S
au

f i
n
d

ic
at

io
n

co
nt

ra
ire

c
i-
ap


s,

l’
E

q
u
at

io
n

10
.6

d
o

it
êt

re
s

at
is

fa
ite

à
t
o

u
s

le
s

n
œ

u
d

s
d

e
p

o
u
tr

es
s

is
m

iq
u
es

p
rim

ai
re

s
o

u
se

co
n
d

ai
re

s
av

ec
d

es
p

o
te

au
x

si
sm

iq
u
es

p
rim

ai
re

s,
p

o
u
r

le
s

d
eu

x
d

ire
ct

io
n
s

p
rin

ci
p

al
es

(
X

e
t
Y

) e
t
p

o
u
r

ch
aq

u
e

se
n
s

d
e

la
s

o
lli
ci

ta
tio

n
si

sm
iq

u
e

;
ai

n
si

l’
E

q
u
at

io
n

10
.6

d
o

it
êt

re
v

ér
ifi

ée


p
o

u
r

q
u
at

re
c

o
n
d

iti
o

n
s,

s
o

it
p

o
u
r

X
p

o
si

tif
,
X

n
ég

at
if,

Y
p

o
si

tif
e

t
Y

n
ég

at
if.

M
3
R

,
M

1
R

c
R

b
H

R


(1
0
.6

)

av
e
c

:
R

M
R

c
s

o
m

m
e

d
e
s

va
le

u
rs

d
e

c
a
lc

u
l d

e
s


si

st
a
n
c
e
s

à
la

f
le

xi
o

n
d

e
s

p
o
te

au
x

co
n
n
e
ct

é
s

au
n

œ
u
d

.
Il

co
n
vi

e
n
t

d
’u

til
is

e
r

la
v

a
le

u
r

m
in

im
al

e
d

e
s


si

st
a
n
c
e
s

à
la

f
le

xi
o

n
d

e
s

p
o
te

au
x

d
a
n
s

l’i
n
te

rv
a
lle

d
e

va
ria

tio
n


d
e
s

ef
fo

rt
s

n
o

rm
au

x
d

e
s

p
o
te

au
x

d
a
n
s

la
s

itu
at

io
n
s

is
m

iq
u
e

d
e

c
a
lc

u
l ;

R
M

R
b


so
m

m
e

d
e
s

va
le

u
rs

d
e

c
a
lc

u
l d

e
s


si

st
a
n
c
e
s

à
la

f
le

xi
o

n
d

e
s

p
o

u
tr

e
s

co
n
n
e
ct

é
e
s

au
n

œ
u
d

.

L
e
s

a
rm

at
u
re

s
d

e
d

a
lle

s
p

a
ra

llè
le

s
au

x
p

o
u
tr

e
s

et
s

itu
é
e
s

d
a
n
s

la
la

rg
e
u
r

p
a
rt

ic
ip

a
n
te

d
e

m
e
m

b
ru

re
c

o
n
tr

ib
u
e
n
t

à
la

r
é
si

st
a
n
c
e

e
n
fl

ex
io

n
d

e
s

p
o

u
tr

e
s,


si

e
lle

s
so

n
t

a
n
c


e
s

au
d

e


d
e

la
s

e
ct

io
n
d

e
s

p
o

u
tr

e
s

si
tu

é
e

à
la

f
ac

e
d

u


n
œ

u
d

.

Il
n’

e
st

p
as

n
é
c
e
ss

a
ire

d
e

re
sp

e
ct

e
r

l’E
q

u
at

io
n
(1

0
.6

) d
a
n
s

le
s

c
as

s
u
iv

a
n
ts

:

au

d
er

n
ie

r
ét

ag
e

d
e

b
ât

im
en

ts
à

p
lu

si
eu

rs
é

ta
g

e
s,


d

a
n
s

le
s

b
ât

im
e
n
ts

à
u

n
s

e
u
l é

ta
g

e,

d

a
n
s

le
p

re
m

ie
r

ét
ag

e
d

e
s

b
ât

im
e
n
ts

d
e

d
e
u
x

ét
ag

e
s,

s
i l

a
va

le
u
r

d
e

l’e
ff

o
rt


n
o

rm
al

r
é
d

u
it

o
d
n

e
d

é
p

as
se

p
as

0
,3

d
a
n
s

to
u
t

p
o
te

au
,
av

e
c

:

o
d
=

N
E

d
/A

c
f c

d


(1
0
.7

)

D
a
n
s

le
s

o
ss

at
u
re

s
c
o

m
p

o
rt

a
n
t

au
m

o
in

s
q

u
at

re
p

o
te

au
x

e
n
p

la
n
a

ya
n
t

d
e
s

se
ct

io
n
s

tr
a
n
sv

e
rs

a
le

s
a
p

p
ro

xi
m

at
iv

e
m

e
n
t

d
e

m
ê
m

e
s

d
im

e
n
si

o
n
s,

il
n

’e
st


p

as
n

é
c
e
ss

a
ire

d
e

re
sp

e
ct

e
r

l’E
q

u
at

io
n
1

0
.6

d
a
n
s

p
lu

s
d

e
tr

o
is

p
o
te

au
x

su
r

q
u
at

re
.

B
ie

n
q

u
e

c
e
la

n
e

so
it

p
as

p


c
is

é
p

a
r

l’E
C

8
,

il
e
st

r
e
c
o

m
m

a
n
d

é
d

e
c
o

n
si

d
é
re

r
q

u
e

le
s

p
o
te

au
x

d
’u

n
m

ê
m

e
n
iv

e
au

o
n
t

d
e
s

se
ct

io
n
s

tr
a
n
sv

e
rs

a
le

s
a
p

p
ro

xi
m

at
iv

e
m

e
n
t

d
e

m
ê
m

e
s

d
im

e
n
si

o
n
s

si
le

u
rs

r
ig

id
ité

s
à

la


fle
xi

o
n
n

e
va

ri
e
n
t

p
as

d
e

p
lu

s
d

e
2
0

%
.

10
.6

.2


Po
te

au
x

10
.6

.2
.1

D
éf

in
iti

on
L
e
s

p
o
te

au
x

so
n
t

d
e
s

é


m
e
n
ts

d
e

st
ru

ct
u
re

g
é
n
é
ra

le
m

e
n
t

ve
rt

ic
au

x
su

p
p

o
rt

an
t

d
e
s

ch
ar

g
e
s

g
ra

vi
ta

ire
s

p
ar

c
o

m
p

re
ss

io
n.

Il
s

so
n
t

so
u
m

is
à

u
n


ef
fo

rt
n

o
rm

al
r

é
d

u
it

d
e

ca
lc

u
l o

d
(

E
q

u
at

io
n
1

0
.7

) s
u
p

é
rie

u
r

à
0
,1

.

84


Th
e

In
st

it
ut

io
n

of
S

tr
uc

tu
ra

l E
ng

in
ee

rs
G

ui
de

p
ou

r l
a

co
nc

ep
tio

n
pa

ra
si

sm
iq

ue
d

es
b

ât
im

en
ts

e
n

ac
ie

r o
u

en
b

ét
on

s
el

on
l’

EC
8

10
.6


B

ât
im

en
ts

e
n


to

n

10
.6

.1
.2

R
el

at
iv

e
re

si
st

an
ce

o
f b

ea
m

s
an

d
co

lu
m

ns
E

xc
e
p

t
w

h
e
re

n
o
te

d
b

e
lo

w
,

E
q

u
at

io
n
1

0
.6

m
u
st

b
e

sa
tis

fie
d

a
t

a
ll

th
e

jo
in

ts
o

f
p

rim
a
ry

o
r

se
c
o

n
d

a
ry

s
e
is

m
ic

b
e
a
m

s
w

ith
p

rim
a
ry

s
e
is

m
ic

c
o

lu
m

n
s,

f
o

r
th

e
tw

o
p

rin
ci

p
a
l h

o
riz

o
n
ta

l d
ire

ct
io

n
s

o
f
th

e
st

ru
ct

u
re

(
sa

y
X

a
n
d

Y
) a

n
d

f
o

r
e
ac

h


d
ire

ct
io

n
o

f
th

e
se

is
m

ic
a

ct
io

n.
T

h
u
s

E
q

u
at

io
n
1

0
.6

m
u
st

b
e

c
h
e
c
ke

d
f
o

r
fo

u
r

c
o

n
d

iti
o

n
s,

n
a
m

e
ly

p
o

si
tiv

e
X

,
n
e
g

at
iv

e
X

,
p

o
si

tiv
e

Y
a

n
d

n
e
g

at
iv

e
Y.



.
M

M
1

3
R

c
R

b
H

R
R


(1

0
.6

)

w
h
e
re

:
R

M
R

c
i

s
th

e
su

m
o

f
d

e
si

g
n
v

a
lu

e
s

o
f
th

e
fle

xu
ra

l s
tr

e
n
g

th
s

o
f
th

e
c
o

lu
m

n
s

c
o

n
n
e
ct

e
d

t
o

t
h
e

jo
in

t.
T

h
e

lo
w

e
st

v
a
lu

e
o

f
th

e
fle

xu
ra

l s
tr

e
n
g

th
s

o
f
th

e
c
o

lu
m

n
s

fo
r

th
e

ra
n
g

e
o

f
th

e
a

xi
a
l f

o
rc

e
s

u
n
d

e
r

th
e

d
e
si

g
n


se
is

m
ic

s
itu

at
io

n
m

u
st

b
e

co
n
si

d
e
re

d
;

R
M

R
b


is
t

h
e

su
m

o
f
d

e
si

g
n
v

a
lu

e
s

o
f
th

e
fle

xu
ra

l s
tr

e
n
g

th
s

o
f
th

e
b

e
a
m

s
c
o

n
n
e
ct

e
d

t
o

t
h
e

jo
in

t.

S
la

b
r

e
in

fo
rc

e
m

e
n
t

p
a
ra

lle
l t

o
t

h
e

b
e
a
m

a
n
d

w
ith

in
t

h
e

ef
fe

ct
iv

e
fla

n
g

e
w

id
th


c
o

n
tr

ib
u
te

s
to

t
h
e

fle
xu

ra
l c

a
p

ac
iti

e
s

o
f
th

e
b

e
a
m

s,
if

it
is

a
n
c
h
o

re
d

b
ey

o
n
d


th

e
b

e
a
m

s
e
ct

io
n
a

t
th

e
fa

c
e

o
f
th

e
jo

in
t.

E
q

u
at

io
n
(1

0
.6

) n
e
e
d

n
o
t

a
p

p
ly

in
t

h
e

fo
llo

w
in

g
c

as
e
s:


at

t
h
e

to
p

le
ve

l o
f
m

u
lti

-s
to

re
y

b
u
ild

in
g

s,

in

s
in

g
le

s
to

re
y

b
u
ild

in
g

s,

at

t
h
e

b
o
tt

o
m

s
to

re
y

o
f
tw

o
-s

to
re

y
b

u
ild

in
g

s
if

th
e

va
lu

e
o

f
th

e
n
o

rm
a
lis

e
d


a

xi
a
l l

o
ad

o
d
d

o
e
s

n
o
t

ex
c
e
e
d

0
.3

in
a

n
y

c
o

lu
m

n,
w

h
e
re

:

o
d
=

N
E

d
/A

c
f c

d


(1
0
.7

)

In
p

la
n

e
fr

a
m

e
s

w
ith

a
t

le
a
st

f
o

u
r

c
o

lu
m

n
s

o
f

a
b

o
u

t
th

e
sa

m
e

c
ro

ss
-

se
c
tio

n
a
l s

iz
e,

it
is

n
o

t
n

e
c
e
ss

a
ry

t
o

c
o

m
p

ly
w

ith
E

q
u

a
tio

n
1

0
.6

in
m

o
re


th

a
n
t

h
re

e
c
o

lu
m

n
s

o
u

t
o

f
ev

e
ry

f
o

u
r.
T

h
o

u
g

h
n

o
t

st
a
te

d
in

E
C

8
,

it
is


re

c
o

m
m

e
n
d

e
d

t
h

a
t

c
o

lu
m

n
s

a
t

th
e
le

ve
l c

o
n
si

d
e
re

d
m

ay
b

e
a

ss
u

m
e
d

t
o


b

e
o

f
a
b

o
u

t
th

e
s

a
m

e
c

ro
ss

-s
e
c
tio

n
a
l s

iz
e
if

t
h
e
ir
fl

e
xu

ra
l s

tif
fn

e
ss

d
o

e
s

n
o

t
va

ry
b

y
m

o
re

t
h
a
n
2

0
%

.

10
.6

.2


C
ol

um
ns

10
.6

.2
.1

D
ef

in
iti

on
T

h
e

co
lu

m
n
s

ar
e

g
e
n
er

al
ly

v
e
rt

ic
al

s
tr

u
ct

u
ra

l e
le

m
e
n
ts

s
u
p

p
o

rt
in

g
g

ra
vi

ty


lo
ad

s
in

c
o

m
p

re
ss

io
n.

T
h
ey

a
re

s
u
b

je
ct

e
d

t
o

a
n

o
rm

a
lis

e
d

d
e
si

g
n
a

xi
a
l f

o
rc

e
o

d
(

E
q

u
at

io
n
1

0
.7

) h
ig

h
e
r

th
a
n
0

.1
.

Th
e

In
st

it
ut

io
n

of
S

tr
uc

tu
ra

l E
ng

in
ee

rs
M

an
ua

l f
or

th
e

se
is

m
ic

d
es

ig
n

of
s

te
el

a
nd

c
on

cr
et

e
bu

ild
in

gs
to

E
ur

oc
od

e
8


84



10
.6

C
on

cr
et

e
bu

ild
in

gs

Page 208

P
o

u
r


su

m
e
r,

l’é
va

lu
at

io
n
d

ét
a
ill

é
e

c
o

n
fir

m
e

q
u
e

c
et

te
s

tr
u
ct

u
re

d
o

it
êt

re


c
o

n
si

d
é


e
c
o

m
m

e
m

o
d

é


m
e
n
t

irr
é
g

u
liè

re
e

n
p

la
n,

c
a
r

le
r

ay
o

n
d

e
to

rs
io

n


d
a
n
s

la
d

ire
ct

io
n
X

e
st

in
su

ffi
sa

n
t

vi
s-

à-
vi

s
d

e
l’e

xc
e
n
tr

ic
ité

d
u
c

e
n
tr

e
d

e
ra

id
e
u
r.

C
e
p

e
n
d

a
n
t

la
s

tr
u
ct

u
re

e
st

e
n
c
o

re
(
à

la
li

m
ite

) d
a
n
s

le
d

o
m

a
in

e
d

’a
p

p
lic

at
io

n
d

u
M

a
n
u
e
l,

m
ai

s
u
n
e

a
n
al

ys
e

3
D

d
o

it
êt

re
u

til
is

é
e.

18
7

Th
e

In
st

it
ut

io
n

of
S

tr
uc

tu
ra

l E
ng

in
ee

rs
G

ui
de

p
ou

r l
a

co
nc

ep
tio

n
pa

ra
si

sm
iq

ue
d

es
b

ât
im

en
ts

e
n

ac
ie

r o
u

en
b

ét
on

s
el

on
l’

EC
8

A
nn

ex
e

A

To
s

u
m

m
a
ris

e,
t

h
e

d
et

a
ile

d
a

ss
e
ss

m
e
n
t

c
o

n
fir

m
s

th
at

t
h
e

st
ru

ct
u
re

m
u
st


b

e
cl

as
si

fie
d

a
s

m
o

d
er

at
el

y
irr

e
g

u
la

r
in

p
la

n,
b

e
ca

u
se

t
h
e

to
rs

io
n
al

r
ad

iu
s

in


th
e

X
d

ire
ct

io
n
is

in
su

ffi
ci

e
n
tly

la
rg

e
in

r
e
la

tio
n
t

o
t

h
e

st
iff

n
e
ss

e
c
c
e
n
tr

ic
ity

.
H

o
w

ev
e
r,

th
e

st
ru

ct
u
re

s
til

l (
ju

st
) f

a
lls

w
ith

in
t

h
e

sc
o

p
e

o
f
th

e
M

a
n
u
a
l,

b
u
t

m
u
st

b
e

a
n
a
ly

se
d

w
ith

a
3

-D
m

o
d

e
l.

A
pp

en
di

x
A

Th
e

In
st

it
ut

io
n

of
S

tr
uc

tu
ra

l E
ng

in
ee

rs
M

an
ua

l f
or

th
e

se
is

m
ic

d
es

ig
n

of
s

te
el

a
nd

c
on

cr
et

e
bu

ild
in

gs
to

E
ur

oc
od

e
8


18

7

Page 209

The Institution of Structural Engineers
International HQ
11 Upper Belgrave Street
London SW1X 8BH
UK

T. + 44 (0)20 7235 4535
F. + 44 (0)20 7235 4294
mail @ istructe.org
www.istructe.org

Registered with the Charity Commission for England
and Wales No. 233392 and in Scotland No. SC038263

This Manual supports the seismic design of buildings to BS EN 1998-1: 2004
and BS EN 1998-5: 2004 and their National Annexes. It covers fully the
seismic aspects of the design of steel and concrete buildings up to 40m
high which do not have significant structural irregularity. However, the
Manual may also be useful for the seismic design of taller or more unusual
structures.

The text is fully presented in both French and English, the former
incorporating the French Nationally Determined Parameters (NDPs) of
EN 1998 and the latter the UK NDPs. The Manual is primarily intended
for application in areas of moderate to high seismicity, although the much
simpler rules applicable to areas of low seismicity are also covered.

The Manual is part of a suite of manuals for the Eurocodes.

Le présent Manuel est consacré à la conception de bâtiments selon les
normes NF EN 1998-1: 2004 et NF EN 1998-5: 2004 et leurs annexes
nationales. Il couvre complètement la conception des bâtiments
modérément irréguliers en béton ou en acier dont la hauteur n’excède
pas 40m. Néanmoins, il peut être utilisé pour le prédimensionnement de
bâtiments plus élevés ou de configuration moins courante.

Le texte est présenté parallèlement en Français et en Anglais, dans sa
totalité. Les Paramètres Déterminés Nationalement (NDPs) français sont
donnés dans la version française et les NDPs britanniques dans la version
anglaise. Le Manuel est conçu pour être appliqué dans les zones de
sismicité modérée à forte, mais les règles plus simples applicables aux
zones de faible sismicité sont également couvertes.

Le Manuel fait partie d’une collection de manuels sur les Eurocodes.

Similer Documents