Title Radar Engineering and Fundamentals of Navigational Aids_G. S. N. Raju 717.0 KB 124
```                            INTRODUCTION TO RADAR RADAR PARAMETERS AND THEIR DEFINITIONS
FACTORS AFFECTING RADAR OPERATION AND RADAR LOSSES
SOLVED PROBLEMS
```
##### Document Text Contents
Page 1

Scilab Textbook Companion for
Radar Engineering and Fundamentals of

by G. S. N. Raju1

Created by
Garnapudi Vamsikrishna

B.Tech
Computer Engineering

SASTRA UNIVERSITY
College Teacher

N. Raju
Cross-Checked by
Lavitha Pereira

May 26, 2014

1Funded by a grant from the National Mission on Education through ICT,
http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab
codes written in it can be downloaded from the "Textbook Companion Project"
section at the website http://scilab.in

Page 2

Book Description

Title: Radar Engineering and Fundamentals of Navigational Aids

Author: G. S. N. Raju

Publisher: I. k. International, New Delhi

Edition: 1

Year: 2010

ISBN: 978-81-906942-1-6

1

Page 62

Scilab code Exa 9.17 FINDING BEAMWIDTH POWERGAIN AND DI-
RECTIVITY

1 // Chapter−9 example 17
2 //

=============================================================================

3 clc ;
4 clear ;
5 // input data
6 F = 8*10^9; // rada r o p e r a t i n g f r e qu en cy in hz
7 Vo = 3*10^10;// v e l o c i t y o f EM wave i n cm/ s
8 D = 9;// pyramida horn d iamete r i n cm
9 W = 4;// pyramida horn width i n cm

10 // C a l c u l a t i o n s
11 lamda = Vo/F// wave l ength i n cm
12 HPBW_E = 56*( lamda /D)// ha l f p owe r beamwidth i n E−

p lane ;
13 HPBW_H = 67*( lamda /W)// ha l f p owe r beamwidth i n H−

p lane ;
14 Gp = (4.5*W*D) /( lamda* lamda ); // power ga in
15 G = 10* log10 (Gp); // power ga in i n dB
16 Di =(7.5* W*D) /( lamda* lamda ); // d i r e c t i v i t y
17
18
19 // Output
20 mprintf ( ’ Ha l fpower beamwidth ib E−p lane i s %3 . 2 f

d e g r e e s \n Hal fpower beamwidth iN H−p lane i s %3 . 2 f
d e g r e e s \n Powergain i s %3 . 2 f dB\n D i r e c t i v i t y i s
%3 . 2 f ’ ,HPBW_E ,HPBW_H ,G,Di ) ;

21
22
23 //=============end o f the program

==============================================

61

Page 63

Scilab code Exa 9.18 FINDING POWER GAIN OF HORN ANTENNA

1 // Chapter−9 example 18
2 //

=============================================================================

3 clc ;
4 clear ;
5 // input data
6 // Aperture s i z e = 10∗ lamda
7 // C a l c u l a t i o n s
8 //Gp = ( 4 . 5 ∗W∗D) /( lamda∗ lamda ) ;
9 //Gp = ( 4 . 5 ∗ ( 1 0 ∗ lamda ) ∗ (10∗ lamda ) ) /( lamda∗ lamda ) ;

10 Gp = (4.5*10*10) ; // power ga in o f s qua r e horn
antenna

11 G = 10* log10 (Gp); // power ga in i n dB
12
13 // Output
14 mprintf ( ’ Power Gain o f Square Horn Antenna i s %3 . 2 f

dB ’ ,G);
15 //=============end o f the program

==============================================

Scilab code Exa 9.19 FINDING POWER GAIN AND DIRECTIVITY

1 // Chapter−9 example 19
2 //

=============================================================================

3 clc ;
4 clear ;
5 // input data

62

Page 123

2 //
==========================================================================

3 clc ;
4 clear ;
5 // Given data
6 G = 50; // antenna ga in i n dB
7 f = 6*10^9; // op e r a t i n g f r e qu en cy
8 Te = 1000; // No i s e temp in k e l v i n
9 SNR = 20; // min SNR in dB

10 L = 10; // Lo s s e s i n dB
11 F = 3; // No i s e F i gu r e i n dB
12 RCS = -10; // Radar c r o s s s e c t i o n i n dB
13 K = 1.38*10^ -23; // boltzman con s t an t
14 Vo = 3*10^8; // v e l o f Em wave i n m/ s ;
15 DC = 0.3; // Duty c y c l e
16 R = 300*10^3; // Range i n kms
17 Pav = 1000; // Average power i n watt s
18 SV = 20; // s e a r c h volume
19 Ts = 3; // Scan t ime
20
21 // c a l c u l a t i o n s
22
23 Pav1 = 10* log10 (Pav) // c onv e r s i o n to dB
24 KT = 10* log10 (Te*K) // c onv e r s i o n

to dB
25 R4 = 10* log10 (R^4) // c onv e r s i o n to dB
26 Ts1 = 10* log10 (Ts) // c onv e r s i o n to

dB
27 //SNR = (Pav � A� RCS� Ts ) /(16 � Rˆ4 � K� Te � L� F� SV)
28 A = (SNR -Pav1 -Ts -RCS +16+ R4+KT+L+F+SV);//

ap e r t u r e
29 Pt = Pav /DC; // peak ower i n

watt s
30 //A1 =10ˆ(A/10) ; // a n t i l o g

c a l c u l a t i o n
31
32 // output

122

Page 124

33 mprintf( ’A = %3. 2 f dB nn Peak power Pt = %3. 2 f KWnn ’ ,
A,Pt /1000);

34 / / mp r i n t f ( ’A = %3. 2 f m^2 nn ’ , A1)
35 mprintf( ’ Note : c a l c u l a t i o n e r r o r i n tex tbook at KT ’

)

36 / /
=============================================================================

123