Download Radar Engineering and Fundamentals of Navigational Aids_G. S. N. Raju PDF

TitleRadar Engineering and Fundamentals of Navigational Aids_G. S. N. Raju
File Size717.0 KB
Total Pages124
Table of Contents
                            INTRODUCTION TO RADAR RADAR PARAMETERS AND THEIR DEFINITIONS
BASIC RADARS
ADVANCED RADARS
TRACKING RADAR
FACTORS AFFECTING RADAR OPERATION AND RADAR LOSSES
RADAR TRANSMITTERS
RADAR RECEIVERS
RADAR ANTENNAS
SOLVED PROBLEMS
                        
Document Text Contents
Page 1

Scilab Textbook Companion for
Radar Engineering and Fundamentals of

Navigational Aids
by G. S. N. Raju1

Created by
Garnapudi Vamsikrishna

B.Tech
Computer Engineering

SASTRA UNIVERSITY
College Teacher

N. Raju
Cross-Checked by
Lavitha Pereira

May 26, 2014

1Funded by a grant from the National Mission on Education through ICT,
http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab
codes written in it can be downloaded from the "Textbook Companion Project"
section at the website http://scilab.in

Page 2

Book Description

Title: Radar Engineering and Fundamentals of Navigational Aids

Author: G. S. N. Raju

Publisher: I. k. International, New Delhi

Edition: 1

Year: 2010

ISBN: 978-81-906942-1-6

1

Page 62

Scilab code Exa 9.17 FINDING BEAMWIDTH POWERGAIN AND DI-
RECTIVITY

1 // Chapter−9 example 17
2 //

=============================================================================

3 clc ;
4 clear ;
5 // input data
6 F = 8*10^9; // rada r o p e r a t i n g f r e qu en cy in hz
7 Vo = 3*10^10;// v e l o c i t y o f EM wave i n cm/ s
8 D = 9;// pyramida horn d iamete r i n cm
9 W = 4;// pyramida horn width i n cm

10 // C a l c u l a t i o n s
11 lamda = Vo/F// wave l ength i n cm
12 HPBW_E = 56*( lamda /D)// ha l f p owe r beamwidth i n E−

p lane ;
13 HPBW_H = 67*( lamda /W)// ha l f p owe r beamwidth i n H−

p lane ;
14 Gp = (4.5*W*D) /( lamda* lamda ); // power ga in
15 G = 10* log10 (Gp); // power ga in i n dB
16 Di =(7.5* W*D) /( lamda* lamda ); // d i r e c t i v i t y
17
18
19 // Output
20 mprintf ( ’ Ha l fpower beamwidth ib E−p lane i s %3 . 2 f

d e g r e e s \n Hal fpower beamwidth iN H−p lane i s %3 . 2 f
d e g r e e s \n Powergain i s %3 . 2 f dB\n D i r e c t i v i t y i s
%3 . 2 f ’ ,HPBW_E ,HPBW_H ,G,Di ) ;

21
22
23 //=============end o f the program

==============================================

61

Page 63

Scilab code Exa 9.18 FINDING POWER GAIN OF HORN ANTENNA

1 // Chapter−9 example 18
2 //

=============================================================================

3 clc ;
4 clear ;
5 // input data
6 // Aperture s i z e = 10∗ lamda
7 // C a l c u l a t i o n s
8 //Gp = ( 4 . 5 ∗W∗D) /( lamda∗ lamda ) ;
9 //Gp = ( 4 . 5 ∗ ( 1 0 ∗ lamda ) ∗ (10∗ lamda ) ) /( lamda∗ lamda ) ;

10 Gp = (4.5*10*10) ; // power ga in o f s qua r e horn
antenna

11 G = 10* log10 (Gp); // power ga in i n dB
12
13 // Output
14 mprintf ( ’ Power Gain o f Square Horn Antenna i s %3 . 2 f

dB ’ ,G);
15 //=============end o f the program

==============================================

Scilab code Exa 9.19 FINDING POWER GAIN AND DIRECTIVITY

1 // Chapter−9 example 19
2 //

=============================================================================

3 clc ;
4 clear ;
5 // input data

62

Page 123

2 //
==========================================================================

3 clc ;
4 clear ;
5 // Given data
6 G = 50; // antenna ga in i n dB
7 f = 6*10^9; // op e r a t i n g f r e qu en cy
8 Te = 1000; // No i s e temp in k e l v i n
9 SNR = 20; // min SNR in dB

10 L = 10; // Lo s s e s i n dB
11 F = 3; // No i s e F i gu r e i n dB
12 RCS = -10; // Radar c r o s s s e c t i o n i n dB
13 K = 1.38*10^ -23; // boltzman con s t an t
14 Vo = 3*10^8; // v e l o f Em wave i n m/ s ;
15 DC = 0.3; // Duty c y c l e
16 R = 300*10^3; // Range i n kms
17 Pav = 1000; // Average power i n watt s
18 SV = 20; // s e a r c h volume
19 Ts = 3; // Scan t ime
20
21 // c a l c u l a t i o n s
22
23 Pav1 = 10* log10 (Pav) // c onv e r s i o n to dB
24 KT = 10* log10 (Te*K) // c onv e r s i o n

to dB
25 R4 = 10* log10 (R^4) // c onv e r s i o n to dB
26 Ts1 = 10* log10 (Ts) // c onv e r s i o n to

dB
27 //SNR = (Pav � A� RCS� Ts ) /(16 � Rˆ4 � K� Te � L� F� SV)
28 A = (SNR -Pav1 -Ts -RCS +16+ R4+KT+L+F+SV);//

ap e r t u r e
29 Pt = Pav /DC; // peak ower i n

watt s
30 //A1 =10ˆ(A/10) ; // a n t i l o g

c a l c u l a t i o n
31
32 // output

122

Page 124

33 mprintf( ’A = %3. 2 f dB nn Peak power Pt = %3. 2 f KWnn ’ ,
A,Pt /1000);

34 / / mp r i n t f ( ’A = %3. 2 f m^2 nn ’ , A1)
35 mprintf( ’ Note : c a l c u l a t i o n e r r o r i n tex tbook at KT ’

)

36 / /
=============================================================================

123

Similer Documents